uk.org.ogsadai.activity.files
Class Lagrange
java.lang.Object
|
+--uk.org.ogsadai.activity.files.Lagrange
- public class Lagrange
- extends java.lang.Object
A class which generates Lagrange interpolating polynomials interpolating the co-ordinates (pn, n), given an array of integers {pn}.
The generated polynomial is defined to be of degree n-1 if there are n co-ordinates.
- Author:
- The OGSA-DAI Project Team
Field Summary |
private static java.lang.String |
COPYRIGHT_NOTICE
Copyright statement |
private int |
mN
|
private int[] |
mX
|
private int[] |
mY
|
Constructor Summary |
Lagrange(int[] vals)
Generate a new polynomial based on the given "seed integers" {pn}. |
Method Summary |
double |
p(int x)
The function representing the Lagrange interpolating polynomial. |
double |
p(int j, int x)
The function representing one part of the Lagrange interpolating polynomial, used by the function P(int x) . |
java.lang.String |
toString()
Return a textual representation of the array of seed integers. |
Methods inherited from class java.lang.Object |
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait |
COPYRIGHT_NOTICE
private static final java.lang.String COPYRIGHT_NOTICE
-
Copyright statement
- See Also:
- Constant Field Values
mX
private int[] mX
-
mY
private int[] mY
-
mN
private int mN
-
Lagrange
public Lagrange(int[] vals)
-
Generate a new polynomial based on the given "seed integers" {pn}.
- Parameters:
vals
- The seed integers
toString
public java.lang.String toString()
-
Return a textual representation of the array of seed integers. For debugging purposes only.
-
- Overrides:
toString
in class java.lang.Object
-
- Returns:
- the textual representation
p
public double p(int x)
-
The function representing the Lagrange interpolating polynomial.
P(x) =def Sum of (Pj(x)), for j = 1 to n.
-
- Parameters:
x
- The abscissa
- Returns:
- the ordinate
p
public double p(int j,
int x)
-
The function representing one part of the Lagrange interpolating polynomial, used by the function
P(int x)
.
Pj(x) =def yj * Product of ((x - xk) / (xj - xk)), for k = 1 to n and k != j.
-
- Parameters:
j
- The index j of the function Pj
x
- The abscissa
- Returns:
- the ordinate